«ЦРТ-инновации» и Минобр представляют новую технологию для контакт-центров
13, октябрь 2016 Компания «ЦРТ-инновации» совместно с Министерством образования РФ разработала технологию кластерного анализа – автоматического структурирования и понимания больших массивов речевых данных. Технология базируется на основных принципах работы с большими данными и использует для реализации алгоритмов наиболее успешные современные методы машинного обучения. Разработка будет применяться в крупных контакт-центрах и службах поддержки, где ежедневно накапливается большой объем записей телефонных переговоров «клиент-оператор» и часто возникает необходимость получить информацию о составе, структуре и содержании новой, незнакомой аналитику базы данных. Полученная информация может быть использована для выявления наиболее частых поводов обращения абонентов в контакт-центр, обнаружения связи между этими обращениями, определения объемов кластеров таких обращений, перевода обслуживания по некоторым типам обращений в автоматический режим (IVR) и т.п. «Достоинствами разработанной нами технологии являются возможность автоматической адаптации используемого алгоритма к новой предметной области (обучение системы на целевой выборке происходит без участия эксперта-аналитика, что делает данную систему экономически выгодной и более производительной) и наличие специально разработанных алгоритмов предобработки данных, позволяющих выделить наиболее информативные смысловые центры (так называемые «паттерны») диалогов «клиент-оператор» и исключить из рассмотрения неинформативные («мусорные») фрагменты диалогов, что значительно повышает надежность и результативность», - комментирует R&D директор Группы ЦРТ Кирилл Левин . Технология кластерного анализа входит в состав предлагаемой «ЦРТ-инновации» универсальной методики, основанной на таких последовательных принципах извлечения информации (information retrieval) из неструктурированных массивов речевых данных и их интеллектуального анализа (data mining), как: Предлагаемая «ЦРТ-инновации» универсальная методика основана на таких последовательных принципах извлечения информации (information retrieval) из неструктурированных массивов речевых данных и их интеллектуального анализа (data mining), как:
Алгоритм основан на методе машинного обучения «без учителя» (unsupervised learning) с применением алгоритмов k-means и LDA на каждом шаге иерархической кластеризации.
Алгоритм основан на методе машинного обучения «без учителя» (unsupervised learning), использующего метод one-class-svm. Выявление наиболее значимых слов и фраз и последующее составление текстовых аннотаций , содержащих в себе информативную составляющую речи |
|