Публикации
Защита высокоскоростного Ethernet WAN, статья
Pure Storage: платформа хранения для клауд эры, статья
Резервное копирование как основной компонент информационной безопасности, статья
Гиперконвергентная система AERODISK vAIR, статья
Big Data Flash – новый сектор AFA, статья
AI – следующая волна компьютеризации, статья
Veritas Access: программно-определяемое хранилище для неструктурированных данных, статья
Brocade Fabric Vision: новые возможности , статья
Cisco: машинное обучение для ИБ, статья
Рынок серверов: первое положительное полугодие после четырех с половиной лет снижения поставок, новость
Toshiba представляет однокорпусные SSD-диски на основе 64-слойной 3D флеш-памяти, новость
 
Обзоры
Все обзоры в Storage News
 
Тематические публикации
Flash-память
Облачные вычисления/сервисы
Специализ. СХД для BI-хранилищ, аналитика "больших данных", интеграция данных
Современные СХД
Информационная безопасность (ИБ), борьба с мошенничеством
Рынки
IBM впервые в отрасли запускает машинное обучение в частном облаке

20, март 2017  — 

IBM автоматизирует процесс разработки и обучения аналитических моделей на площадке, где размещены наиболее ценные корпоративные данные, начиная с мейнфреймов z Systems (1)

Компания IBM ( NYSE : IBM ) представила IBM Machine Learning , первую когнитивную платформу для непрерывного создания, обучения и развертывания большого объема аналитических моделей в частном облаке, которое лежит в основе обширных корпоративных хранилищ данных. Даже используя самые современные методы, специалисты по обработке данных, которых сейчас не хватает на рынке, могут потратить дни или недели на пошаговую разработку, тестирование и модификацию всего одной аналитической модели.

IBM взяла за основу технологию машинного обучения платформы IBM Watson и прежде всего сделает ее доступной там, где размещена большая часть корпоративных данных заказчиков: на мейнфреймах z Systems , операционных ядрах глобальных организаций. С их помощью банки, предприятия розничной торговли, страховые, транспортные и государственные компании ежедневно проводят миллиарды транзакций.

IBM Machine Learning позволяет специалистам по обработке данных автоматизировать создание, обучение и развертывание операционных аналитических моделей, поддерживающих:

•  любой язык (например, Scala , Java , Python );

•  любой популярный фреймворк для машинного обучения (например, Apache SparkML , TensorFlow , H 2 O );

•  любой тип данных по транзакциям;

•  перемещение данных в облако без дополнительных расходов, задержек или рисков.

Cognitive Automation for Data Scientists , разработанная IBM Research , помогает специалистам по обработке информации выбирать подходящий алгоритм для анализа путем сравнения доступных алгоритмов с имеющимися данными и их ранжирования. Таким образом, система находит наилучшее соответствие для текущих потребностей. Сервис также учитывает различные обстоятельства, например, необходимый функционал алгоритма и скорость получения результатов.

Заказчики уже начали понимать ценность IBM Machine Learning for z / OS . В частности, Argus Health (группа DST ) использует эту технологию, чтобы помочь плательщикам и поставщикам справляться с растущим количеством сложных задач и оптимизировать результаты их решения. Argus тестирует различные сценарии применения IBM Machine Learning for z / OS для разработки, обучения и развертывания приложений, которые позволят лучше управлять расходами аптек. С помощью этой технологии Argus надеется продолжить работу над построением уникальных решений, которые будут обеспечивать инсайтами на базе углубленной аналитики участников различных сценариев. В том числе будут учитываться такие места оказания медицинской помощи, как кабинет врача и аптека.

«Миссия Argus состоит в том, чтобы наши клиенты в рамках программы медицинского страхования добивались наилучших результатов лечения с медицинской и финансовой точки зрения. Для этого мы стремимся предоставить самый высокий уровень обслуживания по оптимальной цене и в наиболее удобном для пациентов месте. Компания также стремится стать ведущим в отрасли поставщиком фармакологических и медицинских решений, – сказал Марк Палмер, президент Argus Health . – Нас впечатлили те возможности и потенциал, которые мы увидели в рамках совместной работы IBM Machine Learning с нашей платформой по обработке претензий RxNova, медицинскими решениями и прикладной аналитикой. Такое объединение сервисов позволило создавать модели, которые постоянно совершенствуются благодаря поступающим данным, и получать результаты в режиме реального времени, что отвечает интересам пациентов, специалистов по уходу за больными и врачей».

«Машинное и глубокое обучение представляют собой новые сферы аналитики. Эти технологии станут основой автоматизации процесса получения инсайтов в масштабе критически важных систем и облачных сервисов по всему миру, – сказал Роб Томас, руководитель IBM Analytics . – IBM Machine Learning была разработана для эффективного использования ключевых технологий Watson и ускорения внедрения машинного обучения на площадках, где сконцентрирована подавляющая часть корпоративных данных. Поскольку заказчики замечают бизнес-отдачу от инвестиций в частное облако, они будут расширять применение гибридных и публичных облаков».

IBM Machine Learning станет уникальной возможностью, которая поможет бизнесу из различных отраслей справляться с задачами динамического характера.

•  В сфере розничной торговли система предсказания объемов продаж должна принимать во внимание современные тренды на рынке, а не только тенденции прошлого месяца. Для персонализации в режиме реального времени программа должна учитывать все, что случилось за прошедший час.

•  В сфере финансовых сервисов система, которая предлагает различные продукты для финансовых консультантов или брокеров, должна эффективно учитывать текущие интересы, тренды и движения рынка, а не события прошлых месяцев.

•  В области здравоохранения решения персонализированной медицины должны подстраиваться под каждого заказчика и конкретный случай. Медицинские и персональные фитнес-устройства, подключаемые через интернет вещей, могут быть использованы для сбора данных о поведении человека и компьютера, а также их взаимодействии.

Мейнфрейм IBM z Systems способен обрабатывать до 2,5 млрд транзакций в день – это эквивалент примерно 100 «киберпонедельников». IBM Machine Learning for z / OS помогает извлечь наибольшую ценность из данных z Systems , не перемещая при этом информацию из системы для анализа. Это также позволяет минимизировать задержки, затраты на проведение транзакций и риски безопасности, связанные с традиционными ETL -процессами. Система постоянно анализирует данные, модели для предоставления улучшенных прогнозов, инструменты оптимизации поведенческих моделей и ускорения времени получения инсайтов.

IBM Machine Learning сначала будет доступна на z / OS , а затем появится на других платформах, включая IBM POWER Systems . Развертывая IBM Machine Learning на POWER Systems , заказчики смогут более эффективно использовать машинное обучение, обеспечивая высокую производительность и рентабельность вместе с полным управлением данными.

Узнайте больше о IBM Machine Learning на сайте https :// ibm . biz / machinelearning .

Более подробную информацию о портфеле решений IBM z Systems можно найти на сайте http://www-03.ibm.com/systems/ru/z/ или в блоге IBM Systems blog .

1 McKinsey Global Institute, “Big Data: The next frontier for innovation, competition and productivity,” http://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation

(1) Оригинальная версия пресс-релиза на английском была выпущена 15 февраля 2017 года под заголовком «IBM Brings Machine Learning to the Private Cloud».

Публикации по теме
Специализ. СХД для BI-хранилищ, аналитика "больших данных", интеграция данных
 
Новости IBM

© "Storage News" journal, Russia&CIS
Редакция: 115516, Москва, а/я 57; тел./факс - (495) 233-4935;
www.storagenews.ru; info@storagenews.ru.