Публикации
2023 г. – новый этап практического применения CXL, статья
VMware сдвигает акцент в проекте Capitola на CXL, статья
Dell Validated Design for Analytics — Data Lakehouse: интегрированное хранилище данных, статья
OCP Global Summit: решения для Computational Storage и компонуемых масштабируемых архитектур, статья
Samsung CXL MemoryySemantic SSD: 20M IOPs, статья
UCIe – открытый протокол для взаимосвязи чиплетов и построения дезагрегированных инфраструктур, статья
Omni-Path Express – открытый интерконнект для экзафлопных HPC/AI-систем, статья
GigaIO: CDI_решение на базе AMD для высшего образования, статья
Энергоэффективные ЦОД на примерах решений Supermicro, Lenovo, Iceotope, Meta, статья
От хранилищ данных и “озер данных” к open data lakehouse и фабрике данных, статья
EuroHPC JU развивает НРС-экосистему на базе RISC-V, статья
LightOS™ 2.2 – программно-определяемое составное блочное NVMe/TCP хранилище, статья
End-to-end 64G FC NAFA, статья
Computational Storage, статья
Технология KIOXIA Software-Enabled Flash™, статья
Pavilion: 200 млн IOPS на стойку, статья
CXL 2.0: инновации в операциях Load/Store вводаавывода, статья
Тестирование референсной архитектуры Weka AI на базе NVIDIA DGX A100, статья
Fujitsu ETERNUS CS8000 – единая масштабируемая платформа для резервного копирования и архивирования, статья
SmartNIC – новый уровень инфраструктурной обработки, статья
Ethernet SSD, JBOF, EBOF и дезагрегированные хранилища, статья
Compute, Memory и Storage, статья
Lenovo: CXL – будущее серверов с многоуровневой памятью , статья
Liqid: компонуемые дезагрегированные инфраструктуры для HPC и AI, статья
Intel® Agilex™ FPGA, статья
Weka для AI-трансформации, статья
Cloudera Data Platform – “лучшее из двух миров”, статья
Fujitsu ETERNUS DSP - разработано для будущего, статья
Технологии охлаждения для следующего поколения HPC-решений, статья
Что такое современный HBA?, статья
Fugaku– самый быстрый суперкомпьютер в мире, статья
НРС – эпоха революционных изменений, статья
Новое поколение СХД Fujitsu ETERNUS, статья
Зональное хранение данных, статья
За пределами суперкомпьютеров, статья
Применение Intel® Optane™ DC и Intel® FPGA PAC, статья
Адаптивные HPC/AI-архитектуры для экзаскейл-эры, статья
DAOS: СХД для HPC/BigData/AI приложений в эру экзаскейл_вычислений, статья
IPsec в пост-квантовую эру, статья
LiCO: оркестрация гибридныхНРС/AI/BigData_инфраструктур, статья
 
Обзоры
Все обзоры в Storage News
 
Тематические публикации
Flash-память
Облачные вычисления/сервисы
Специализ. СХД для BI-хранилищ, аналитика "больших данных", интеграция данных
Современные СХД
Информационная безопасность (ИБ), борьба с мошенничеством
Рынки
INTEL: БУДУЩЕЕ ПРОИЗВОДСТВЕННЫХ ТЕХНОЛОГИЙ

12, октябрь 2012  —  В последнее время часто приходится слышать о том, что эволюция технологических процессов завершается. Но никто не верит в то, что развитие производственных технологий остановится совсем, поэтому правильнее задать другой вопрос: прекратится ли возможность разрабатывать и внедрять новые технологические процессы каждые 2 года, как это было спрогнозировано Гордоном Муром около 50 лет назад?

Перед тем, как делать прогнозы, обратимся к истории. В индустрии микроэлектроники все начиналось с относительно простых вещей. Традиционные МОП-транзисторы для микропроцессоров имели фиксированную архитектуру, и перспективы внедрения новых производственных технологий были очевидны: уменьшаем размеры по вертикали и горизонтали, понижаем напряжение – и получаем желаемое: еще более компактные, еще менее «прожорливые» в отношении энергии более быстрые транзисторы. Конечно, периодически приходилось внедрять что-то новое: ионную имплантацию, самосовмещенные затворы, нитридные подзатворные элементы. Но сама архитектура оставалась неизменной в течение многих лет.

Конец масштабирования технологических процессов?
Даже в эпоху расцвета полупроводниковых технологий эксперты предсказывали скорый конец масштабирования технологических процессов: «оптическая литография достигнет предела на отметке 0,75–0,50 мкм», «минимальные размеры элементов ограничены 0,3–0,5 мкм», «при размерах элементов менее 1 мкм нужно использовать уже рентгеновскую литографию», «медные проводники не смогут работать», «масштабирование техпроцессов завершится в ближайшие 10 лет». Но развитие не остановилось.

Компоненты, выполненные по 130-нанометровой технологии, были, по всей видимости, последней «настоящей» технологией, реализованной в привычной архитектуре. Начало 90-х годов XX в. было отмечено кардинальными изменениями в отрасли, когда Intel создала полупроводники с одноосевой деформацией, выполненные по 90-нанометровому технологическому процессу. Эта разработка, отмеченная использованием кремний-германиевых элементов в р–канальных структурах металлоксид-полупроводник (МОП), открыла эпоху трансформации материалов, которая сопровождалась значительными изменениями как физических размеров, так и электрических показателей. 65-нанометровые структуры стали последними, в которых использовался подзатворный диэлектрик на основе диоксида кремния – настоящая «рабочая лошадка» того времени. Начиная с 45-нанометрового технологического процесса Intel перешла на новаторский на тот момент времени диэлектрик high - k на основе диоксида гафния. Выпуск 22-нанометровых структур ознаменовал конец 50-летней эпохи плоскостных МОП-транзисторов и переход к трехмерным 3 D Tri - Gate .

За последнее десятилетие в значительной степени изменились не только структура элементов, не только используемые материалы, но и сама задача масштабирования размеров. В 80–90-е годы XX в ее решение позволяло легко и просто увеличить скорость работы транзисторов, чтобы затем создать микропроцессоры с более высокой тактовой частотой. Но за это мы должны были расплачиваться более высокими показателями токов утечки и, соответственно, тепловыделения. В 2000-х гг. рост спроса на мобильные устройства привел к тому, что во главе угла стали показатели энергоэффективности, а не производительности. При разработке всех современных вычислительных устройств, начиная с высокопроизводительных серверов и заканчивая маломощными мобильными телефонами, повышенное внимание уделяется более низким токам утечки и энергоэкономичности. Все возрастающий интерес к однокристальным системам вынуждает разработчиков искать пути создания устройств на базе одной микросхемы: от высокопроизводительных транзисторов до транзисторов с ультранизким уровнем утечки.

Будущее за новыми подходами к разработке новой продукции
История развития индустрии напоминает о том, что единственной неизменной вещью в ней являются изменения. В будущем принципиально новые архитектуры смогут коренным образом изменить представления о существующих возможностях для развития. Предложены перспективные решения: туннельные транзисторы, BISFET , графеновые структуры и спиновые полевые транзисторы. Они активно изучаются ведущими производителями полупроводников и отраслевыми организациями.

Другая не менее важная тенденция заключается в более тесной интеграции производственных технологий, проектирования продукции и создания архитектур. За последние несколько поколений технологий ограничения по масштабированию технологических процессов привели к сокращению возможностей для проектирования новых продуктов, что вызвало необходимость во взаимной оптимизации процессов проектирования и производства. Вероятно, что эта тенденция сохранится, и будущее полупроводниковых технологий будет связано с интеграцией производства, проектирования и создания архитектур, как в случае с трехмерной многоуровневой структурой (в рамках одной микросхемы, а не на уровне вертикальных межсоединений), и с новыми подходами к вычислениям, включая производственные технологии, оптимизированные для небинарной логики.

Публикации по теме
Центры обработки данных
 
Новости Intel

© "Storage News" journal, Russia&CIS
(495) 233-4935;
www.storagenews.ru; info@storagenews.ru.